// lab2: rectangles
// <insert your name here>
// read main.cpp, and follow the instructions at the bottom of main.cpp

#define NOMINMAX // prevent Windows API from conflicting with "min" and "max"

#include <stdio.h>   // C-style output. printf(char*,...), putchar(int)
#include <windows.h> // SetConsoleCursorPosition(HANDLE,COORD)
#include <conio.h>   // _getch()

/**
 * moves the console cursor to the given x/y coordinate
 * 0, 0 is the upper-left hand coordinate. Standard consoles are 80x24.
 * @param x
 * @param y
 */
void moveCursor(int x, int y)
{
	COORD c = {x,y};
	SetConsoleCursorPosition(GetStdHandle(STD_OUTPUT_HANDLE), c);
}

struct Vec2
{
	short x, y;
	Vec2() : x(0), y(0) { }
	Vec2(int x, int y) : x(x), y(y) { }
	void add(Vec2 v)
	{
		x += v.x;
		y += v.y;
	}
};

class Rect
{
	Vec2 min, max;
public:
	Rect(int minx, int miny, int maxx, int maxy)
		:min(minx,miny),max(maxx,maxy)
	{}
	Rect(){}
	void draw(const char letter) const
	{
		for(int row = min.y; row < max.y; row++)
		{
			for(int col = min.x; col < max.x; col++)
			{
				if(row >= 0 && col >= 0)
				{
					moveCursor(col, row);
					putchar(letter);
				}
			}
		}
	}
	bool isOverlapping(Rect const & r) const
	{
		return !( min.x >= r.max.x || max.x <= r.min.x
		       || min.y >= r.max.y || max.y <= r.min.y);
	}
	void translate(Vec2 const & delta)
	{
		min.add(delta);
		max.add(delta);
	}
};

int main()
{
	// initialization
	Rect userRect(7, 5, 10, 9);
	Rect rect0(10, 2, 14, 4);
	Rect rect1(1, 6, 5, 15);
	int userInput;
	do
	{
		// draw
		rect0.draw('0');
		rect1.draw('1');
		moveCursor(0, 0);	// re-print instructions
		printf("move with 'w', 'a', 's', and 'd'");
		userRect.draw('#');
		// user input
		userInput = _getch();
		// update
		Vec2 move;
		switch(userInput)
		{
		case 'w':	move = Vec2( 0,-1);	break;
		case 'a':	move = Vec2(-1, 0);	break;
		case 's':	move = Vec2( 0,+1);	break;
		case 'd':	move = Vec2(+1, 0);	break;
		}
		userRect.draw(' ');	// un-draw before moving
		userRect.translate(move);
	}while(userInput != 27); // escape key
	return 0;
}









// INSTRUCTIONS
// ------------
// Compile this code. You should see 3 rectangles, one of which you can move 
// with the 'w', 'a', 's', and 'd' keys.
//
// Read through this code! Try to understand it before starting the assignment.
// Comment confusing lines with what you think code is doing, and experiment
// with existing code to test your understanding.
// Once you feel comfortable with this code, accomplish each of the following,
// and make sure your code compiles and runs after each step is completed.
//
// 1) Get and set functions
//   a) In Rect, create a get and set methods for "min" and "max". Use the
//      signature "void setMin(Vec2 const & min)" and
//      "void setMax(Vec2 const & max)". Use the "this" pointer to disambiguate
//      "min" and "max".
// 1) Refactor userRect to be dynamic
//   a) Make userRect a dynamic object. That means it should be declared as
//      "Rect * userRect" instead of "Rect userRect". Use new to dynamically
//      allocate.
//   b) the member operator '.' will need to be replaced with the
//      pointer-to-member operator '->'
//   c) Don't forget to delete userRect at the end of the program!
// 2) Operator Overloading
//   a) Overload the += operator for Vec2, and have it do exactly what
//      Vec2::add does.
//   b) Replace uses of Vec2::add with the += operator. For example, instead of
//      "min.add(delta);", use "min += delta;".
// 3) Random rectangles, by reference and by pointer
//   a) create a method with the method signature "void setRandom(Rect & r)".
//      This function will give the passed-in Rect object a random location.
//      The random x should be between 0 and 50 x. The random y should be
//      between 0 and 20. Limit the possible width and height to a minimum of 2
//      and a maximum of 10.
//   b) test "void setRandom(Rect & r)" on the local Rect object "rect0".
//   c) create a method with the method signature
//      "void setRandomByPointer(Rect * r)", which functions the same as
//      "void setRandom(Rect & r)", except that the argument is
//      passed-by-pointer.
//   d) test "void setRandomByPointer(Rect * r)" on the local Rect object
//      "rect1".
// 4) Test and show overlap
//   a) Using the existing function "isOverlapping(Rect const &)", test to see
//      if userRect collides with any other Rect objects. If userRect is
//      overlapping, draw it with '+' instead '#'.
//   b) Create a Rect * pointer that points to the address if the Rect object
//      that userRect collides with. It should point at NULL if userRect is
//      colliding with no other Rect objects.
//   c) Print to the screen the width and height of a Rect object that userRect
//      collides with. If no collision is happening, print "no collision"
//      instead.
// 5) Array of objects
//   a) Replace the Rect objects rect0 and rect1 with an array of 2 Rect
//      objects, "rect[2]".
//   b) Make sure you replace every remaining "rect0" with "rect[0]", and every
//      "rect1" with "rect[1]".
//   c) Increase the size of the "rect" array to 5. Make sure all 5 Rect
//      objects are randomized, drawn to the screen, and tested for collision.
//   d) If you have not already done so, replace
//      duplicate-code-using-array-elements with a for-loop. For example:
//      If you have:
//          rect[0].draw('0');
//          rect[1].draw('1');
//          rect[2].draw('2');
//          rect[3].draw('3');
//          rect[4].draw('4');
//      Replace it with:
//          for(int i = 0; i < NUMBER_OF_RECTS; i++)
//          {
//              rect[i].draw('0'+i);
//          }
//      Do this where objects are randomized, drawn, and tested for collision
[bookmark: _GoBack]
